

Presented by **Jean Grady (GSFC)** 

Facility Science Team Meeting (FST) February 21 – 22, 2008 / Boulder, Colorado





## **Highlights Since Last FST Meeting (December 2006)**

- Updated mission concept for single satellite (Atlas V launch) to accommodate recommendations from December 2006 FST meeting:
  - Includes both X-ray Grating Spectrometer (XGS) and Hard X-ray Telescope (HXT) with updated performance requirements
  - XMS field of view increase
- Supported the National Research Council's (NRC) Beyond Einstein Program Assessment Committee (BEPAC) review process, with comprehensive information on Con-X (November 2006 – May 2007)
  - Science
  - Technology development status and plans
  - Mission, instrument and spacecraft risks
  - Instrument and spacecraft technical details and schedules
  - Operations plans
  - Cost estimates and budget requirements
- Technology Development milestone progress in following areas:
  - Spectroscopy X-ray Telescope mirror X-ray test
  - Microcalorimeter multiplexing and position sensitive devices
- Recently received FY08 Budget; small increment over FY07



# **Summary Top Level Con-X Science Performance Requirements**

| Effective Area:      | 15,000 cm <sup>2</sup> @ 1.25 keV<br>6,000 cm <sup>2</sup> @ 6 keV |
|----------------------|--------------------------------------------------------------------|
|                      | 150 cm <sup>2</sup> @ 40 keV                                       |
| Bandpass:            | 0.3 – 40 keV                                                       |
| Spectral Resolution: | 1250 @ 0.3 – 1 keV                                                 |
|                      | 2400 @ 6 keV                                                       |
| Angular Resolution   | 15 arcsec 0.3 - 7 keV                                              |
|                      | 30 arcsec 0.7 – 40 keV                                             |
| Field of View        | 5 x 5 arcmin                                                       |



# **Single Launch Atlas V Mission Configuration**

- "Reference" payload
  - Four (4) SXT Flight Mirror Assemblies (FMA's) with X-ray Microcalorimeter
     Spectrometers (XMS's) at each focus
    - Provides required area, spectral resolution and FOV from 0.6 to 10 keV
  - Hard X-ray Telescope (1 or 2) systems
    - Mirrors can be glass segmented or nickel full-shell
  - X-ray Grating Spectrometer (on 1 or more SXT's)
    - Either Off-plane reflection gratings or Critical Angle Transmission gratings
- Overall spacecraft system requirements well within state-of-the-art
  - All spacecraft requirements can be met with existing technology, no technology development required
- Observatory Mass
  - 30 % overall reserve on launch mass
  - Small additional margin



## **Observatory Configuration (Single Atlas V Launch)**





#### **Payload Accommodations**



#### Mirror Accommodations

- Four 1.3 m dia SXT FMA's and 1 2 HXT Mirrors coaligned on Mirror Bench
- Sunshade keeps sun light off mirrors
- Heaters maintain mirrors at room temperature
- Mirror covers provide protection during launch and orbit transfer

#### Detector Accommodations

- XMS, X-ray Grating focal plane camera (not shown) and HXT detectors mount in Focal Plane Module
- Payload Electronics Bay for warm electronics and XMS cryocooler
- Sunshade and cold view to space support
   <100K on XMS "cryogen-less" cryostat shell</li>
- Loop heat pipe takes heat from cryocooler





## **Launch and Mass Summary**



Atlas Payload Adapter Fitting



Con-X in Atlas V 551

| Payload Mass                        |               |               |                 |  |  |
|-------------------------------------|---------------|---------------|-----------------|--|--|
|                                     | Estimate (kg) | Estimate (kg) | Allocation (kg) |  |  |
| Flight Mirror Assembly              | 1572.0        | 30%           | 2043.6          |  |  |
| X-ray Microcalorimeter Spectrometer | 708.0         | 30%           | 920.4           |  |  |
| X-ray Grating Spectrometer          | 100.0         | 30%           | 130.0           |  |  |
| Hard X-ray Telescope                | 100.0         | 30%           | 130.0           |  |  |
| Miscellaneous Payload Items         | 35.6          | 30%           | 46.3            |  |  |
| Payload Total                       | 2515.6        | 30%           | 3270.3          |  |  |

| S/C Bus Mass     |               |             |                 |  |  |
|------------------|---------------|-------------|-----------------|--|--|
|                  | Estimate (kg) | Contingency | Allocation (kg) |  |  |
| C&DH             | 92.4          | 30%         | 120.1           |  |  |
| Attitude Control | 68.0          | 30%         | 88.4            |  |  |
| Communications   | 30.0          | 30%         | 39.0            |  |  |
| Mechanisms       | 146.6         | 30%         | 190.6           |  |  |
| Structure        | 981.2         | 30%         | 1275.6          |  |  |
| Power            | 104.0         | 30%         | 135.2           |  |  |
| Propulsion       | 48.0          | 30%         | 62.4            |  |  |
| Thermal          | 186.3         | 30%         | 242.1           |  |  |
| Harness          | 188.0         | 30%         | 244.4           |  |  |
| S/C Bus Total    | 1844.5        | 30%         | 2397.8          |  |  |

| Launch Mass Summary  |               |                |                 |  |
|----------------------|---------------|----------------|-----------------|--|
|                      | Estimate (kg) | Contingency    | Allocation (kg) |  |
| Payload Total        | 2515.6        | 30%            | 3270.3          |  |
| S/C Bus Total        | 1844.5        | 30%            | 2397.8          |  |
| Separation System    | 164.8         | 30%            | 214.3           |  |
| Observatory Dry Mass | 4524.9        | 30%            | 5882.3          |  |
| Propellant Mass      | 257.4         | 30%            | 334.6           |  |
| Observatory Wet Mass | 4782          | 30%            | 6217.0          |  |
| Throw Mass: 6305 kg  | Pi            | Project Margin |                 |  |

30% overall contingency

6217 kg Wet Mass

> .88 kg Margin



# **Mirror and Microcalorimeter Technology Highlights**

- SXT Mirror Technology
  - Demonstrated < 15 arc sec angular resolution of thin glass mirror segments with X-ray test
  - Mirror Segment Alignment and Mount
    - Implemented two types of "temporary" mounting devices: mattress and Cantor tree mount
    - Development tests ongoing for techniques acceptable for a flight-like mount
- Transition Edge Sensor (TES) Microcalorimeter Technology
  - Produced uniform 8 x 8 arrays; with best spectral resolution of 2.3 eV
  - Multiplexed 2 x 8 readout of 8x8 array, achieving spectral resolution of
    - •~3 eV overall average
    - 2.6 eV on best pixel
  - Completed fabrication and test of first single pixel Position Sensitive TES's (PoST's)
    - Spectral resolution 5 eV; meets requirement of <8 eV for outer portion of Field of View</li>



Mirror segment pair on cradle in GSFC Xray test facility



X-ray image





"Cube"
Permanent
Housing
simulator





NIST MUX facility with GSFC TES



Uniform 8x8 TES Array



TES mulitiplexing



Single TES PoSTs



# **Con-X Mission Schedule (in revision for POPO8))**





#### **Plans for FY08**

#### Continue technology development:

- SXT Mirror: Emphasis on mounting mirror segments
- TES: Work toward building and multiplexing larger arrays

#### Mission and Instrument Studies

- Update instrument concepts and accommodation in observatory
- GSFC Instrument Design Lab (IDL) study for XMS; possibly XGS
- Integrated Mission Design Center to update overall

### Further develop concept for mirror technology transfer

- Document process in a draft plan
- Engage potential industry partners

#### Update overall mission cost estimates

- Complete independent parametric cost estimates for mission (70 % confidence)
- Perform trades, integrate results from mission and instrument updates